
J .  Fluid Mech. (1992), vol. 239, pp. 1-21 
Printed in Great Britain 

1 

The electrohydrodynamic deformation of drops 
suspended in liquids in steady and oscillatory 

electric fields 

By 0. VIZIKA AND D. A. SAVILLE 
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA 

(Received 13 May 1991 and in revised form 19 November 1991) 

When an electric field is applied to a drop suspended in another liquid the drop 
deforms. The relation between the applied field and the mode and magnitude of the 
deformation have been studied extensively. Nevertheless, Torza, Cox & Mason 
(197 1) found that quantitative agreement between the leaky dielectric theory 
(Taylor 1966) and experiment is quite poor. Here we describe results from a new 
series of experiments. Drops suspended in weakly conducting liquids were deformed 
into spheroids with both steady and oscillatory fields. Drop deformation, interfacial 
tension, and the electrical properties of the fluids were measured for each system to 
provide a definitive test of the theory. The agreement between the leaky dielectric 
model and our results for drop deformations in steady fields is much improved over 
previous results, although discrepancies remain for some systems. Drop deformations 
in oscillatory fields consist of steady and oscillatory parts because of the quadratic 
dependence on the field strength. Measurements of the steady part at 60 Hz, where 
the oscillatory deformation is negligible, are in excellent agreement with the theory. 
The effects of frequency on the steady deformation were studied by measuring oblate 
deformations at a series of frequencies and field strengths ; the agreement with theory 
is good. Finally, the time-dependent total deformation was measured under 
conditions where both parts of the deformation are commensurate. Good agreement 
was found between the measured and predicted maximum and minimum 
deformations. Nevertheless, only a small range of fluid properties could be studied 
owing to the need to avoid droplet sedimentation. 

1. Introduction 
Electrohydrodynamics is the study of fluid motions driven by external electrostatic 

fields. The deformation of fluid interfaces, especially the behaviour of drops in 
external fields, has been studied extensively. Part of the early interest derived from 
applications, including the deformation and breakup of raindrops in thunderstorms 
and the breakdown of dielectric liquids due to contaminants such as water droplets. 
Melcher & Taylor (1969) summarize early developments in the area while surveys 
by Melcher (1976) and Arp, Foister & Mason (1980) provide somewhat more 
recent perspectives. Melcher’s Continuum Electromechanics (1981) contains a lucid 
development of theoretical aspects. Contemporary work ranges from experiments on 
the modification of polymer blends (Moriya, Adachi & Kotaka 1985 and Venugopal, 
Krause & Wnek 1989), drop deformation (Moriya, Adachi & Kotaka 1986 and 
Nishiwaki, Adachi & Kotaka 1988), fibre spinning (Larrendo & St John Manley 1981) 
and the enhancement of solvent extraction processes (Scott & Wham 1989) to 
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theoretical studies of free-surface-driven flows (Basaran & Scriven 1988), drop 
deformation and breakup (Sherwood 1988), and compound droplets (Oguz & Sadhal 
1989). Despite this interest, the experimental foundation of the subject is weak. 
Relatively few experiments have been reported and none display much quantitative 
agreement with the extant theory. Here we concentrate on the deformation of drops 
suspended in poorly conducting liquids. 

When an uncharged drop is suspended in a dielectric liquid in an external electric 
field there is discontinuity in the field at the drop interface. In  the classical 
electrostatic model, where the fluids are treated as perfectly insulating dielectrics, 
the electric stress is always normal to  the interface. This stress can be balanced by 
the interfacial tension, so the fluids remain motionless and the deformation is prolate 
(O’Konski & Thacher 1953; Garton & Krasucki 1964). However, experiments by 
Allan & Mason (1962) produced both prolate and oblate droplets. More specifically, 
Allan & Mason observed that conducting drops deformed into prolate spheroids, in 
agreement with predictions based on the electrostatic theory, but some dielectric 
drops deformed into oblate spheroids. A new line of reasoning was introduced by 
Taylor (1966), who proposed what came to be known as the leaky dielectric theory 
or model. I n  this model the liquids have small conductivities so, when an electric field 
is applied, free charge appears a t  the drop interface. However, the charge on the two 
hemispheres of a drop in a uniform field is antisymmetric so the net charge is zero. 
The action of the electric field on this charge sets the fluids in motion and toroidal 
circulation patterns are formed inside and outside the droplet. Taylor’s model was 
able to predict both prolate and oblate deformations - depending on the properties 
of the fluids - in qualitative agreement with the previous experiments. 

Later, extensive experimental work by Torza, Cox & Mason (1971) revealed 
deformations much larger than those predicted theoretically, in most cases by a 
factor of two to four. Since the theory is linearized to address small deformations, 
nonlinear effects could be a factor. However, extending the theory to include higher- 
order terms failed to resolve the disagreement (Ajayi 1978) and the lack of genera1 
agreement between theory and experiment persists to  this day. 

Another explanation was offered by Torza et al. (1971), who suggested that 
electrokinetic phenomena could be responsible for the discrepancies. Ion transport 
produces a charged interface so counterions in the adjacent fluid form a diffuse 
charge layer in each phase. Their structure is determined by a balance between the 
thermal motion of the ions and electrostatic forces. Additional flows and stresses then 
arise from the action of the applied field on the charge cloud. Baygents & Saville 
(1989) developed an  electrokinetic theory which deals with the issues raised by Torza 
et al. However, even though the stresses and microscale motions are more complicated 
than in the leaky dielectric theory, it turns out that the deformation calculated for 
a drop with no net charge is exactly the same as that calculated using the leaky 
dielectric model. Accordingly, when there is no net charge on the drop, the leaky 
dielectric theory is the correct lumped-parameter model and since none of the 
obvious theoretical extensions resolve matters, it seems prudent to carry out further 
experiments to test the theory. Here we present the results of an experimental study 
of drop deformation in steady and oscillatory electric fields. 

The theoretical background is reviewed in $2, which includes the requisite 
formulae for steady and oscillatory fields. In § 3, we discuss experimental procedures 
and drop deformations studied over a range of fluid conductivities in steady fields. 
I n  oscillatory fields, the effects of field intensity and frequency on time-dependent 
and time-independent parts of the deformation were studied for a smaller set of fluid 
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pairs. The results are discussed and reasons for the remaining discrepancies advanced 
in $04 and 5 .  

2. Theoretical background 
2.1.  The leaky dielectric model 

To explain the behaviour of a spheroidal drop suspended in another liquid, Taylor 
(1966) suggested that the fluids be treated as dielectrics with an Ohmic resistance; 
conduction processes produce free charge on the interface(figure 1 )  and the action of 
the field on the charge sets the fluids into motion. The main points of the leaky 
dielectric theory are outlined here using an adaptation of Taylor's (1966) notation, 
which differs from that of Torza et al. (1971). 

Consider two isopycnic, immiscible fluids. A drop of fluid with undeformed radius 
a is suspended in another fluid (overbars will be used to identify the drop phase). 
Viscosities are denoted by p, dielectric constants by e, and conductivities by IT. The 
liquid-liquid interface is characterized by a uniform interfacial tension, y. The shape 
of the drop is calculated by determining the deformation necessary to balance the 
stresses due to the electric field and flow. 

The fluids have uniform properties and there is no free charge in the bulk phases 
so the electric field is described by solutions to Laplace's equation inside and outside 
the drop. The conditions placed on the potential are: ( a )  the field is finite, (b)  the 
tangential electric field is continuous at  the interface, ( c )  the conduction current 
normal to the interface is continuous, and ( d )  far from the drop the field has a 
uniform magnitude, E,. The components of the net electric stress at the drop 
interface (i.e. the jumps in the electric stress across the interface) are 

9Ei e0 
( 2  + R)' 

[Tg] = -- (a- .F) cos Bsin 8 

in spherical coordinates with 8 denoting the angle measured from the rear of the drop 
(Taylor 1966); e, is the permittivity of free space and R = #/a is the ratio of 
conductivities. 

The charge arising on the interface to compensate for the jump in the normal 
component of the electric field is 

p(e) = 38, E,  cos 8 - (F.;]. 
Equation ( 2 )  shows that the total charge on the drop is zero but the drop hemispheres 
facing the electrodes become positively or negatively charged depending on the sign 

If the velocity is small, the Stokes equations describe flow inside and outside the 
drop. The boundary conditions imposed at the drop interface are the continuity of 
velocity and stress. The jumps in the radial and tangential viscous stress at the drop 

of (t5R-E). 

interface are 

(3) 

9Et 8, F(SR - 1 )  
(2p + 3p) ( 1  - 3 COS' O ) ,  

= 10(2+R)2(p+p) 

9Ei e0 f? [GI = (2+R)2 (SR - 1 )  cos 8 sin 8, 
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FIQURE 1. Schematic representation of a liquid drop suspended in an infinite liquid dielectric 
deformed under the action of an electric field. Here (ER-c) is negative. 

where S = E / B .  Further details are given by Taylor (1966) and by Melcher & Taylor 
(1969). 

For a slightly deformed interface the radial stress balance can be used to calculate 
the deformation. Let the drop deformation, D ,  be defined by 

D=- dl - d2 
d, + d,’ (4) 

where d, and d ,  are the lengths of drop axes parallel and perpendicular to the applied 
field. For small deformations the drop takes the shape of a spheroid, namely 

r = a{l+2$(3cos2B-1)}, (5)  

where a is the radius of the undeformed drop. The balance of radial stresses on the 
drop interface requires that 

where yC is the radial force density due to interfacial tension with C denoting the 
curvature of the interface, and the deformation is given by 

[TI + [TI - y c  = 0, (6) 

9E B @ 
167 (2 +R), ’ 

D = m a E i ,  m G 2 -  

2M+3 0 A S ’ ( R ~ + ~ ) - ~ + ~ ( A S B - ~ ) -  
5 M + 5 ’  

(7) 

@ is Taylor’s ‘discriminating function’ and M = p/,ii. If the fluid parameters are 
adjusted such that @ = 0 the drop retains its spherical shape. @ > 0 means d ,  > d ,  
and the drop takes on a prolate form ; for @ < 0, d ,  < d ,  and the drop is deformed 
into an oblate spheroid. 

A schematic representation of a drop under a uniform external electric field is 
shown in figure 1,  which depicts the charge distribution for the case where ( d 2 - F ~  is 
negative, e.g. the outer fluid is more conductive than the inner fluid. Here the 
hemisphere facing the negative electrode is negatively charged, the tangential 
electric stress is positive, and flow is from the poles to the equator. 

2.2 .  The leaky dielectric model for oscillatory jields 
Torza et al. (1971) extended Taylor’s model to include situations where the applied 
field varies with time as 

E = E, cos wt (8) 
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and w = 2nf is the angular frequency of the field. As can be seen from (l) ,  even 
though the electric field at the drop interface is time-dependent, the electric stress 
has both steady and time-dependent components. Thus, the total drop deformation, 
D ,  has steady and time-dependent components, D, and D,. By considering both the 
steady and the time-dependent parts of the normal stress on the interface, Torza 
et al. calculated the total deformation, namely 

D = D,+D,. (9) 

For the steady component of the stress, the deformation is given by equations similar 
to (7),  namely 

9s s 
D, = - O @,a& 

1 6 ~  
except that 

S2R( 11 + 1 M )  + 15S2( 1 +M)  + S( 19 + 1W) + 15R2X~2~2(M+ 1) (X + 2 )  
5(H+ 1) [S2(2 +R)2 +R27,w2( 1 + 25)2]  

@,= 1 -  

and E is the root-mean-square field strength. Here 7 = E , E / @  denotes a relaxation 
time; for w = 0 these formulae reduce to (7) since E = E,. For the time-dependent 
part, \ 

R2S72w2(SR- 1),(19+ 1W) [20(M+ l ) - S ( M +  i ) ]  i 
25(M+ 1)2[S2(2 +R), +R27,w2( 1 + 2S),I2 I 

k = w,ua/y 

F:-h,FZ , h*= h*-(h*) 
2 2  1 + ikA, ’ 

, sinp = h*+(h*) 
21 

cosp = 

A2(5S-  2 )  
S 

-2A+1, F: G 
RS2( 1 + imR) 

F’ [ (2+R)S+i7~(1+25)R]~’  

( 1 W +  19) (W+ 2 )  
20(M+ 1)  ’ A, = = 3 ( W + 3 )  

.-(;R ) 5(M+ 1) ’ 

S( 1 + i7wR) 
(2  +R) 5+ i m ( l +  2 5 )  R * 

A =  

The overbars denote complex conjugates. These formulae were used in the 
comparisons between theoretical and experimental results. 

3. Experimental programme 
3.1. Materials and experimental procedures 

3.1.1. Apparatus 
The experiments described here were carried out as part of an ongoing study of 

electrohydrodynamics; our system works as follows. Drops are suspended in a 
rectangular glass cell equipped with two flat brass electrodes (4 x 4 cm, about 0.1 cm 
in thickness) mounted opposite each other. The separation distance is adjustable and 
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Microsyringe 

Aluminium baseplate 

High-voltage 
power supply 

Remote 

IBM PC AT-Digitizer board 

.v. 

i base 

Cell schematic 

FIGURE 2. Schematic diagram of the experimental set-up. 

is usually 3.35 cm. A schematic diagram of the experimental set-up is shown in figure 
2. Small drops (the drop diameter seldom exceeds 1 mm) experience a uniform field 
if suspended in the central region of the cell. An electric field is applied across the 
electrodes from a Spellman power supply ; field strengths range from 0 to 4.5 kV/cm. 
Where an oscillating field is needed, a Trek oscillating voltage supply/amplifier is 
used (output voltagef20 kV). 

The cell is mounted on a (x,z)-translator-rotator system and the digital camera 
(Ikegami CCD) and the microscope lens are mounted on an (2, y,z)-translator 
system. Both systems are mounted on a rail for stability. This set-up allows rough 
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alignment and adjustment of the distance between the cell and the optical 
observation system. The fine alignment and focusing are made with micrometer 
screws on the translators. 

An electrometer connected in series to the network (after the low-voltage 
electrode) enables us to measure the current continuously. In this way, the resistance 
of the cell can be calculated and changes due to aging, impurities, or the effect of the 
electric field monitored. 

The voltage applied to the high-voltage electrode can be measured directly with an 
oscilloscope using a high-voltage probe connected to the electrode, or calculated from 
the Spellman reading minus the voltage drop in the leads. Either method gives the 
same result. 

3.1.2. Experimental procedure 
The fluids are chosen so that the host fluid has either the same density as the 

suspended drop or a very high viscosity so that drops rise or fall very slowly. Drops 
are released in the host fluid from a microsyringe held by a clamp mounted on a rod. 
After a drop is released, the microsyringe is removed and an image of the quiescent 
drop captured. Then the power supply is turned on and the output voltage increased 
systematically. For each value of the applied field, an image of the deformed drop is 
captured after the drop has reached steady state (this is extremely important when 
the host fluid is very viscous, and the drop may need several seconds to obtain the 
final shape). The drop images from the CCD camera are sent to the Matrox frame 
grabber board which converts the video image to a 640 by 480 pixel digital image ; 
single drops usually occupy an area 200-300 pixels on a side, although larger images 
are used when the deformation is small. The digitized image signal is viewed with a 
Mitsubishi colour monitor. Drop deformations are measured using image analysis and 
enhancement techniques with the microsyringe tip used as a calibration object. 

3.1.3. Measurements of the physical properties of the @ids 
To attempt a rigorous comparison between theory and experiment, the properties 

of the fluids must be measured as accurately as possible. As can be seen from the 
equations given in the theoretical section, the properties to be measured are the 
viscosities, dielectric constants and conductivities of the liquids and the interfacial 
tension. 

(a)  Dielectric constant measurements The dielectric constant of a liquid is calculated 
as the ratio of the capacitance of the test cell filled with the liquid, C,, divided by the 
capacitance of the same cell when empty and dry, C,. For very accurate 
measurements three-terminal cells are usually used (ASTM 1987). Our measure- 
ments require easy dismantling and cleaning (many of the liquids are very 
viscous oils), so the three-terminal idea was abandoned and a simple two-terminal 
cell designed. The cell consists of two Teflon plates separated by a 5 cm diameter 
Plexiglas tube. The aluminium electrodes are 4.5 cm in diameter and separated by a 
0.3 cm, gap. With this cell the measured capacitance includes contributions from the 
Teflon plates and liquid outside the electrodes. It turns out that this capacitance can 
be as much as 20% of the total capacitance of the empty cell. Obviously the 
accuracy of these measurements cannot be the same as that of the measurements 
with three-terminal cells. However, calibration of this cell with a liquid of high purity 
and known dielectric constant can assure enough accuracy for our purposes; the 
accuracy is better than 1 %, with a reproducibility of 0.1 %. The procedure is to use 
a constant volume of liquid and to assume that the capacitance extraneous to this 
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volume is constant. If C, denotes the capacitance extraneous to the fixed volume, 
then the dielectric constant of the fluid is (C,- Ce)/(Cv- C e ) .  From the measurement 
on the standard fluid, the 'extra' capacitance, C,, is determined for the particular 
volume of liquid. For cell calibration, pure cyclohexane with a dielectric constant of 
2.023 is used, as suggested by Hartshorn, Parry & Essen (1955). After the cell was 
calibrated, measurements of the dielectric constant of other pure liquids were made ; 
they agreed with tabulated data (Margott & Smith 1951; American Institute of 
Physics Handbook 1972). 

( b )  Interfacial tension measurements There are several static and dynamic methods 
for measuring the interfacial tension between two liquids (Davis & Rideal 1963; 
Adamson 1967). However, for our systems, where (p-p) - lo-' gm/cm3, most of 
these methods cannot be applied. The main problem is to ensure that a large solid 
surface (e.g. a plate or ring) is uniformly wet by the one of the fluids. We avoid this 
problem by using a method where a straight platinum wire is pulled (vertically) 
through the liquid-liquid interface (Miller, Penn & Hedvat 1983). The force is 
measured using an electrobalance and easily related to the interfacial tension and 
perimeter of the wire, which is measured in a microscope and verified by measuring 
the surface tension of a standard liquid. Hexadecane was used in the results reported 
here since high-purity samples were available and it does not easily pick up 
substances that could affect the surface tension. The overall accuracy of the method 
was checked by measuring the interfacial tension of the water-hexadecane system. 

( c )  Conductivity measurements The conductivity of the fluid and its dependence on 
the electric field strength can be important. Ordinary conductivity meters are not 
appropriate since the fluid conductivities are low, 10-9-10-13 S/m. An experimental 
set-up similar to that shown in figure 2 is used for our measurements. High voltage 
is applied when the cell is filled with the low-conductivity fluid and the current 
through the circuit measured by means of a sensitive ammeter (measuring down to 
lo-'' A). From the voltage-current curves, the resistance of the cell is deduced and 
the conductivity of the liquid calculated. 

3.1.4. Summary of the physical property measurements 
The physicochemical and electric properties of the fluid systems used in the 

experiments are given in table 1 ; all measurements were made at  room temperature. 
Figure 3 shows a water drop suspended in castor oil; it  deforms into a prolate 
spheroid as the field increases from 0 to 3.5kV/cm. An oblate silicone oil crop 
suspended in a mixture of castor oil and a surfactant (Triton, octylphen- 
oxyethoxyethanol, Rohm & Haas Co.) is shown in figure 4. Large amounts of 
surfactant were used in some experiments to control the conductivity and lower the 
interfacial tension so as to provide larger deformations. In the water systems the 
Triton concentration was 1&12 wt.% while in the castor oil system the con- 
centration was 35 %, by volume. 

3.2. Drop deformation measurements in steady fields 
The fluid systems can be divided into three classes: 

simplified equation 
Class ( i )  : R b 1. Fluids in this class give prolate deformations described by the 

(13) D = -aE& 

This class includes systems in which the drop fluid is much more conductive than the 
host fluid, e.g. water drops in castor oil. 

9 E o  E 

16Y 
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0 
E,, = 0 kV/cm, D = 0 ED = 0.87 kV/cm, D = 0.0045 E, = 1.47 kV/cm, D = 0.0112 

E, = 2.35 kV/cm, D = 0.0312 ED = 2.94 kV/cm, D = 0.049 ED = 3.82 kV/cm, D = 0.087 

FIGURE 3. Sequence of pictures of a water drop suspended in castor oil ; as the field increases the 
drop deforms into a prolate spheroid. The deformation, D ,  and field strength, E ,  (kV/cm), are noted 
on the figure; the electric field is horizontal. 

000 
EO = 0.75 kV/cm, D = -0.002 Eo = 1.25 kV/cm, D = -0.0083 ED = 1.97 kV/cm, D = -0.0166 

00 
ED = 2.45 kV/cm, D = -0.025 ED = 3.16 kV/cm, D = -0.046 

FIGURE 4. Sequence of pictures of a silicon oil drop suspended in castor oil + Triton ; as the field 
increases the drop deforms into an oblate spheroid. The deformation, D,  and field strength, 
E,  (kV/cm), are noted on the figure; the electric field is horizontal. 

Figure 5 shows experimental results and theoretical calculations for several fluid 
pairs in this class. The continuous lines are ‘least squares’ fits of the experimental 
data and the dashed lines correspond to the theoretically predicted behaviour. For 
each fluid pair, the behaviour of 4-10 different drops was measured. According to the 
results, D and aEi are linearly related ; the agreement with the theory, although far 
from perfect in some cases, is much improved over that achieved by Torza et al. 
(1971). In  some instances the behaviour of our fluids changed when they stood in 
contact for some time to equilibrate. Evidently the two fluids were not completely 
immiscible and some constituents partition between the two phases or accumulate on 
the interface. The notation ‘ non-equilibrated ’ and ‘equilibrated ’ is used to 
distinguish such situations. 
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D 

0 0.2 0.4 0.6 0.8 1 .o 
aE: (kV*/cm) 

FIQURE 5. Deformation measurements for fluid systems giving prolate deformations : x , 
water + Triton drops in castor oil ; 0,  water + Triton drops in silicone oil (125 P) (equilibrated) ; 0,  
water drops in castor oil; 0,  water drops in silicone oil (300 P). Dashed lines represent the 
theoretical predictions. 

Class ( i i )  : R 4 1 .  Here the deformation is given by 

A fluid system representative of this class is silicone oil (125 P) (the number in 
parentheses is the nominal viscosity of the fluid) in a mixture of castor oil and the 
non-ionic surfactant Triton. The host fluid is much more conductive than the drop 
and deformations are oblate. Results for two systems appear in figure 6. For the 
silicone oil (125 P) drop in castor oil+Triton the discrepancy between theory and 
experiment is quite small. The results for the lower-viscosity drop system without 
surfactant are not in as good agreement with the theory. The reason may be that the 
conductivity ratio for the silicone oil (10 P)-castor oil system is twice as large and so 
small changes in the conductivity of the inner fluid alter the size of the deformation 
substantially. Moreover, as will be discussed shortly, the conductivities of some 
silicone fluids appear to be field-dependent . 

Class ( i i i )  : R = O(1). For fluid pairs in this class, accurate measurements of 
conductivity are necessary since the deformation is sensitive to the magnitude of R.  
In a typical experiment with silicone oil drops in castor oil, oblate deformations 
occurred at  low field strengths but, as the field increased, the drop became less 
deformed and eventually turned into a prolate spheroid. The pattern reversed upon 
lowering the field strength and was reproducible. In  this case, changes in deformation 
might be attributed to the effect of the field on the drop conductivity since separate 
measurements of the conductivity of the silicone oil disclosed that its conductivity 
increases by a factor of 2 over this range of field strengths. Independent 
measurements and in situ monitoring of the cell resistance show that the conductivity 
of the suspending fluid did not change. Thus, as the field strength increases, the 
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D 

0 0.2 0.4 0.6 0.8 1 .o 
aE: (kV'/cm) 

FIQURE 6. Deformation measurements for systems giving oblate deformations : 0, silicone oil 
(125 P) drops in castor oil+ Triton; 0, silicone oil (10 P) drops in castor oil. Dashed lines represent 
the theoretical predictions. The theoretical prediction for the system without surfactant is almost 
sinvisible since it falls on the line describing the results for the experiments with surfactant. 

conductivity ratio would increase from (approximately) 0.5 to 1.0 and, according to 
the theory, equation (7 ) ,  the deformation should change from oblate to prolate. We 
have not yet made an extensive study of deformations for intermediate conductivity 
ratios due to problems in controlling the conductivity and measuring it accurately. 

3.2.1. Summary of the steady field results 
The results of experiments in steady fields are summarized in table 2. The first data 

column gives the measured slope, the second lists the calculated slope, the third 
shows the ratio of these slopes, and the last column gives this ratio for the Torza 
et al. (1971) experiments. Generally, the agreement between theory and experiment 
is much improved compared to previous work. 

3.3. Drop deformation measurements in oscillatory Jields 

In  oscillatory fields the electric stresses have time-dependent and time-independent 
parts so the drop oscillates about a deformed shape. Both t,ime-independent and 
time-dependent deformations were studied. 

3.3.1. The effect of field strength on the time-independent deformation, D, 
First we discuss measurements of the time-independent deformation in cases 

where the frequency is high enough to make the time-dependent deformation 
negligible. The applied field had a sinusoidal waveform with a frequency of 60 Hz, 
measured with an oscilloscope through a high-voltage probe connected to  the high- 
voltage electrode and monitored continuously throughout each experiment. 

The results of steady deformation measurements are summarized in figure 7, where 
we see that the leaky dielectric model, modified to take account of the oscillatory 
field, accurately describes the experimental results. Table 3 summarizes our results 
and previous experimental work. Here the agreement between theory and experiment 
is much better than in the steady field experiments. Note also that in the oscillatory 
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0 0.2 0.4 0.6 0.8 

aE: (kV*/cm) 

FIGURE 7. Deformation measurements in oscillatory fields : 0 ,  water + Triton drops in castor oil ; 
0, water drops in castor oil : A, castor oil drops in silicone oil (100 P) ; , silicone oil (125 P) drops 
in castor oil + Triton. Dashed lines represent the theoretical predictions. 

f (W 
FIGURE 8. The DJdt-frequency relation for four different silicone oil (125 P) drops in castor oil; 
the electric field is maintained constant and the frequency increases from 0 to 400 Hz. The curves 
correspond to the theoretically predicted values for two different values of the drop conductivity, 
d = S/m and 2 x S/m; the different symbols represent different drops. R = 10'. 

field experiments, fresh and pre-equilibrated water + Triton-castor oil systems give 
the same deformation whereas in the steady field experiments significant differences 
existed. We suspect that this agreement may be due to the absence of significant 
interfacial composition gradients in the oscillatory experiments. 
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F (Hz) 
FIGURE 9. The D,/a&frequency relation for silicone oil (125 P) drops in castor oil. As the electric 
field was systematically increased the slope of the D J d :  relation wa.s measured at four different 
frequencies (asterisks). The curves are the theoretically predicted slopes for two different values of 
the drop conductivity: - S/m and 2 x S/m. R = 10'. 

3.3.2. The effect of frequency on the time-independent deformation, D, 
The effect of frequency on the time-independent deformation was studied with the 

silicone oil (125 P)-castor oil system. Two sorts of experiments were carried out. In  
the first set, the field intensity was held constant while the frequency increased from 
0 to 400 Hz. Increasing the frequency diminishes the extent of the oblate deformation 
with this system. The results for four different drops appear in figure 8. Observe that 
the theoretical deformation is very sensitive to the inner fluid conductivity. Some of 
the scatter may be due to small changes in the conductivity in addition to the fact 
that the deformations are small. 

In  the second set of experiments, the frequency was kept constant while the 
amplitude of the field varied from 0 to 3.35 kV/cm. Measurements were made a t  
frequencies of 0,20,60, and 297 Hz ; four to six drops were studied at each frequency. 
The results are summarized on figure 9. The deformation decreases with increasing 
frequency, in agreement with the predictions of the model, and the overall agreement 
between theory and experiment is fairly good ; deviations from the theory are less 
than 20%. If the conductivity were to increase with frequency, this would explain 
why the experimental points are close to the curve corresponding to 
6 =  2 x  10-13S/m at low frequencies and closer to the curve corresponding to 
d = S/m at higher frequencies. 

3.3.3. The effect of frequency on the time-dependent total deformation, D 
The effect of frequency on the time-dependent deformation was studied for the 

system castor oil-silicone oil (100 P). This pair of fluids yields prolate deformations 
in steady fields with calculated deformations in close agreement with the theory (cf. 
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10’ 1 ox 

FIQURE 10. The (Dt/Ds)msx-frequency relation for castor oil drops in silicone oil ( 1 0 0  P). 

0 1  2 3 4  5 6 i 
lot 

0.09 

0.08 

0.07 

7 0.06 + < 0.05 
v E 0.04 
m e  

‘3 0.03 
\ 

Q 0.02 

0.01 

0 

-0.01 
0 1  2 3 4 5 6 

wt 

FIQTJRE 11. Maximum and minimum total deformation, as measured for castor oil drops in 
silicone oil (100 P). The curves depict the theoretically predicted behaviour. 
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table 2). To study time-dependent deformations conditions must be selected where 
the oscillatory part is at  least as large as the steady component. Figure 10, which 
depicts different components of the deformation predicted by the leaky dielectric 
theory, indicates that the time-dependent deformation is as large as the steady part 
below 0.3Hz. The main experimental limitation is that the total deformation is 
small. After releasing a castor oil drop in the silicone oil, the field amplitude was 
increased systematically from 0 to 5.9 kV/cm with the frequency set at  0.19 Hz. 
Drop motion was recorded on video tape a t  selected field strengths. Then, to provide 
data on the maximum and minimum deformations corresponding to a given field 
strength, images were captured at the appropriate times using the Matrox frame 
grabber ; D/aEi was calculated from the experimental data at several different field 
strengths. Figure 11 shows the theoretical cos(2ot +/3) deformation calculated from 
equation (12) along with the measured maximum and minimum deformations over 
one cycle. Data were pooled from several cycles so as to provide error estimates as 
indicated by the error bars on the figure. Note that the prolate deformation oscillates 
between the maximum and a minimum where the droplet is nearly spherical. As the 
figure shows, the experimental data are in good agreement with the theoretical 
predictions. 

4. Discussion 
Although agreement between theory and experiment is rather good, some 

discrepancies remain. Aside from the usual problems, the differences could arise 
from : (i) inhomogeneity of the electric field, (ii) field-dependent interfacial tension, 
(iii) surface conductance and charge convection on the interface, (iv) interfacial 
tension gradients. In our experiments we attempted to avoid electric field 
inhomogeneities by using small droplets placed near the centre of the cell but items 
(i) and (ii) surely deserve further study. In some experiments drop migration was 
observed so special care was taken to ensure that this did not influence deformation 
(by capturing the image rapidly, before large-scale motion developed). In recent 
experiments (in our laboratory by S. Sankaran) it was found that in some cases a 
large-scale bulk motion develops after several minutes of exposure to the field. This 
motion arises from the action of the field on the free charge at  the air-liquid interface 
at the top of the cell but it can be arrested by using a lid on the cell to stop lateral 
motion of the interface. Deformations measured over a period of several minutes 
with a lid in place are the same as those measured in its absence. 

Item (iii) Surface conductance and charge convection. A finite surface conductivity 
could change the magnitudes of the charges facing the electrodes and produce 
changes in the deformation (Torza et al. 1971). However, although the deformation 
would be linear in Ei it would not be linear in aEi. Our results do not show any 
systematic deviation from linearity when both Ei and a are varied. Nevertheless, 
since the experiments cover only a small range of drop radii (0.2 to 0.56 mm), field 
strength effects are dominant. More experiments are needed to elucidate this matter. 

Item (iv) Interfacial tension gradients. To estimate the effect of interfacial tension 
gradients we constructed a simple model based on the behaviour of an insoluble 
surfactant. Of course, Triton, the surfactant used here, is partially soluble, so any 
interfacial tension gradients in our experiments are further modulated by transport 
through the bulk. Nevertheless, the simple model serves to show that interfacial 
tcrision gradients tend to increase the deformation. According to the model outlined 
in the Appendix, the deformation in the presence of interfacial tension gradients due 
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to  an insoluble surfactant (one that remains confined to  the interface) will be the 
same as that given by (7) ,  except that the discriminating function is 

2(SR-1) 

@ = S(R*+ 1 ) - 2 +  (15) 

Here CAe denotes the interfacial concentration of surfactant with surface diffusivity 
Ds and ay/aCA is the rate of change of interfacial tension with composition. 

This expression indicates that interfacial tension gradients ought to produce 
somewhat larger deformations (recall that ay/aCA is usually negative) for prolate or 
oblate drops. Although knowledge of the surface diffusivity and concentration 
dependence of the interfacial tension is necessary for a quantitative assessment of the 
effect, bounds can be estimated by taking the interfacial tension group, 

2acA(a~/acA)/PDs, 

to be zero or infinitely large. The shifts in the deformation calculated in this way are 
small for the systems studied here. Although deformations slightly larger than 
theoretical were observed for prolate drops, the oblate deformations were smaller. It 
seems that interfacial tension gradients play some role in the deformation, but the 
effect is small for our systems and interfacial tension gradients do not appear to be 
the source of the discrepancies between theory and experiment observed here. 

5. Conclusions 
In  steady electric fields, the effect of the field magnitude was investigated for a 

wide range of conductivity ratios ; in oscillatory fields the roles of the field magnitude 
and frequency on the time-dependent and time-independent deformations were 
studied. The agreement with theoretical predictions is much improved compared to 
previous studies. 

In  steady fields : (a )  the experimentally measured deformations of drops deformed 
into prolate ellipsoids are 1.02 to 1.6 times the theoretically predicted values; (b )  for 
drops deformed into oblate ellipsoids, the experimentally measured deformations are 
slightly smaller than the theoretically predicted except for situations where the drop 
conductivity depends on the electric field magnitude. 

In  oscillatory fields : (a) with both prolate and oblate spheroids, the experimentally 
measured deformations did not deviate from the theoretical predictions by more 
than 20%; ( b )  the frequency dependence of both time-dependent and time- 
independent deformations closely follows the ' leaky dielectric model '. 

We do not have an explanation as to why previous experimental work showed 
large discrepancies with the theory. However, the fact that the leaky dielectric model 
successfully predicts the behaviour for the systems studied here suggests that the 
next task is to investigate a wider range of fluid properties and refine the experiment 
to further improve agreement between theory and experiment. An especially 
important consideration is the control of fluid conductivity. 

This work was supported by the NASA PACE program, Contract NAG 2-259. We 
are also indebted to the Textile Research Institute, Princeton NJ  for assistance in 
measuring the interfacial tensions. 
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Appendix. Interfacial tension effects 
Suppose a surface-active agent is absorbed on the fluid-fluid interface. As fluid 

elements move along interface, stretching and compression causes changes in surface 
concentration. Here we consider small changes in surface concentration and ignore 
any exchange of surfactant molecules with the bulk liquid, i.e. the surfactant resides 
only at  the drop interface. The interfacial tension, y ,  depends only on the surface 
concentration, C,; all other fluid properties are assumed to be constant. If C, varies 
over the interface, so does y.  When surface viscosity is absent, the equations given 
by Scriven (1960) and Flumerfelt (1980) for equilibrium at the interface are (6) for 
the normal stress and 

1 aY [GI+[$] =--- 
r ae‘ 

for the tangential component. The distribution of interfacial tension along the drop 
can be obtained from the dependence of C,  on the angle 8, namely 

C A  = c,e+c>(8). (A 2) 

here CAe is the concentration of surfactant when uniformly distributed over the 
interface and C:, is the local deviation from the uniform value. Moreover, 

where ay/aC, is a parameter describing the way the interfacial tension depends on 
the surfactant concentration ; it is usually negative. 

The amount of surface-active agent per unit area satisfies the mass conservation 
law for the surface phase. If the concentration of the surfactant at  any point on the 
interface deviates only slightly from the equilibrium value and there is no net flux 
of surfactant to or from the bulk solution, then convection and diffusion in the 
surface are balanced and 

V, . ( C A  u ) -V , .  (D, V, C A )  = 0. (A 4) 

D, is the surface diffusion coefficient of the surfactant. Neglecting the product C:, u 
yields 

and since 

the surfactant concentration varies over the surface as 

u g  = 2A sin 6 cos 8 (A 6) 

Owing to the motion induced by the electric field, surfactant accumulates at  the 
poles or the equator of the drop depending on the sign of A .  Increaaing the surfactant 
concentration leads to a decrease of the interfacial tension and a t  such points the 
interface has a higher curvature (larger deformation) to keep the stresses balanced. 
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If we denote the coordinate of the point where the interfacial tension is equal to the 
uniform surfactant distribution, yBe, by Be, then the interfacial tension at any other 
point is given by 

From the expression for y and the tangential stress balance, 

9as, Ei 2(SR - 1) A = -  

Together, (A 6) and (A 9) show that the presence of surfactant causes a retardation 
of fluid motion, a common effect of contamination in liquid interfaces (Stone & Leal, 
1990). The normal stress balance leads to expressions for the deformation except that 
now the discriminating function is given by (15). 
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